Let's make a buffer

CHEM 1112

How do you make 250 mL of a 0.2 M buffer with a

 pH of 7.6?Volume, Molarity, pH?

Step 1: Choose your weak acid. How?
HA that has a pKa close to the desired pH

1. $250 \mathrm{~mL}=$ volume
2. $0.2 \mathrm{M}=$ molarity
3. $\mathrm{pH}=7.6$

Weak acid	\mathbf{K}_{a}
Acetic acid	1.8×10^{-5}
Phthalic acid	13×10^{-3}
Dihydrogen phosphate (monobasic)	6.2×10^{-8}
Monohydrogen phosphate (dibasic)	4.8×10^{-19}
Carbonic acid	4.6×10^{-7}
Citrate	8.4×10^{-4}
Dihydrogen citrate (monobasic)	1.8×10^{-5}
Monohydrogen citrate (dibasic)	4.0×10^{-6}

Step 2: Use Henderson-Hasselbalch Equation

- $\mathrm{pH}=\mathrm{pKa}+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$
- $\left[\mathrm{A}^{-}\right]=\mathrm{HPO}_{4}^{-2}$ (dibasic!)
- $[\mathrm{HA}]=\mathrm{H}_{2} \mathrm{PO}_{4}$ - (monobasic)
[A-] = moles $\mathrm{A}^{-} /$total volume
[HA] = moles HA/total volume
$\mathrm{pH}=\mathrm{pKa}+\log$ moles $\mathrm{A}^{-} /$total volume
moles HA/total volume
$\mathrm{pH}=\mathrm{pKa}+\log$ moles $\mathrm{A}-/$ moles HA
- $\mathrm{pH}=\mathrm{pKa}+\log$ moles $\mathrm{A}-/$ moles HA
- $7.6=7.2+\log$ moles A -/moles HA
- -7.2 from both sides:
$0.4=\log$ moles A-/moles HA
$10^{0.4}=$ moles $\mathrm{A}-/ \mathrm{molesHA}$
- Step 3: get another equation
- Moles $\mathrm{A}^{-}+$moles HA = total moles of buffer
- Total moles of buffer $=\mathrm{M} \times$ vol
- Total moles of buffer $=0.2 \mathrm{M} \times 250 \mathrm{~mL}$
- 0.05 moles of buffer $=$ moles $\mathrm{A}^{-}+$moles HA
- Step 4: solve two equations for two unknowns
- 0.05 moles of buffer $=$ moles $\mathrm{A}-+$ moles HA
- $10^{0.4}=$ moles A -/moles HA
- 2.51 = moles A -/moles HA
- $2.51 \times$ moles $\mathrm{HA}=$ moles A^{-}
- Substitute
- 0.05 moles buffer $=2.51$ moles $\mathrm{HA}+$ moles HA
- 0.05 moles buffer $=3.51$ moles HA
- Divide both sides by 3.51
- HA moles $=1.4245 \times 10^{-2}$
- A - moles $=3.575 \times 10^{-2}$

Potassium phosphate monobasic $=136 \mathrm{~g} / \mathrm{mole}$ Potassium phosphate dibasic $=174 \mathrm{~g} / \mathrm{mole}$

- Step five: use molar mass to determine grams
- HA moles $=1.4245 \times 10^{-2} \times 136=1.93$ grams $\mathrm{KH}_{2} \mathrm{PO}_{4}$
- A - moles $=3.575 \times 10^{-2} \times 174=6.22$ grams $\mathrm{K}_{2} \mathrm{HPO}_{4}$

Weigh, put into a 250 volumetric flask, fill half way
Dissolve solids
Fill to thin line
Invert to mix.

Add acid to water

What is the pH when 10 mL of 0.15 M hydrochloric acid is added to a total volume of 200 mL of water?

Moles of acid $=0.01 \mathrm{~L} \times 0.15 \mathrm{M}=1.5 \times 10^{-3}$ moles
Molarity $=1.5 \times 10^{-3}$ moles $/ 0.2 \mathrm{~L}=7.5 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=-\log \left(7.5 \times 10^{-3}\right)=2.12$
The starting pH for water is about 7, so the addition of acid drops the pH a large amount.

Add the same amount of acid to your buffer

 What is the pH when 10 mL of 0.15 M hydrochloric acid is added to 200 mL of pH 7.60 .2 M phosphate buffer?Moles of acid $=0.01 \mathrm{~L} \times 0.15 \mathrm{M}=1.5 \times 10^{-3}$ moles, add moles of acid to HA, subtract moles of acid from A^{-} $\mathrm{pH}=7.2+\log \left(\right.$ moles $\left.\mathrm{A}^{-}-1.5 \times 10^{-3}\right)$

$$
\left(\text { moles } \mathrm{HA}+1.5 \times 10^{-3}\right)
$$

- 0.04 moles of buffer $=$ moles $\mathrm{A}^{-}+$moles HA
- $10^{0.4}=$ moles $\mathrm{A}^{-} /$moles HA
- 2.51 = moles $\mathrm{A}^{-} /$moles HA
- $2.51 \times$ moles HA $=$ moles A^{-}
- Substitute
- 0.04 moles buffer $=2.51$ moles $\mathrm{HA}+$ moles HA
- 0.04 moles buffer $=3.51$ moles HA
- Divide both sides by 3.51
- HA moles $=1.14 \times 10^{-2}$
- A - moles $=2.86 \times 10^{-2}$
$\mathrm{pH}=7.2+\log \left(2.86 \times 10^{-2}-1.5 \times 10^{-3}\right)$
$\left(1.14 \times 10^{-2}+1.5 \times 10^{-3}\right)$
$\mathrm{pH}=7.52$
The pH drops by a tiny amount

If you add base to your buffer, use this equation:
$\mathrm{pH}=7.2+\log \left(2.86 \times 10^{-2}+\right.$ moles base $)$
(1.14 $\times 10^{-2}$ - moles base)

