Devan Gomez Jennifer Sampayan February 22, 2019

III

11140,111711150,1

Vision

Background Basics

- How we tend to see things-
 - Light bounces off an object
 - Through the pupil, through the lens
 - The lens focuses on the light on the retina in the fovea
- In the retina there are rods and cones which are the receptors that allow us to see
- Which is where the process of vision starts
- The rods and cones act similarly when responding to light.
 - Rods low light levels, no color
 - Cones high light levels , capable of color
- In the rods where visual pigment is rhodopsin

Rhodopsin

- Light activated G Protein Coupled Receptor
- 7 transmembrane domains (α helices and loops) are called opsin.
- Opsin forms a pocket where retinal, a light-absorbing molecule, resides.
- Retinal is derived from vitamin A and covalently linked to Lys 296.
- Rhodopsin is located in the disc membranes of the photoreceptor cells (rods) in the retina.

Activation

Mechanism

Inactivation

rhodopsin is phosphorylated by	which
permits the protein,	, to bind to activated rhodopsin. This
prevents the transformation into metarhodopsin II from occurring. Hydrolyzed	
(GTP>GDP) transducin has a built-in	that
itself. Without the presence of metarhodopsin II,	
transducin remains, a	nd also turns off.

WORD BANK:

Arrestin inactivates activated timer rhodopsin kinase PDE inactive

In the dark:

- Ion channels are open
- Depolarizing inward current
- Guanylate cyclase builds up the numbers of cGMP, which then open the ion channels. This depolarizes the cell.
- Rhodopsin regenerates

In the light:

- Ion channels are closed
- Hyperpolarizing outward current, making the cell more negative
- Leads to signal amplification

K+ ions are always flowing out (hyperpolarizing outward current)

References

Casiday, Rachel, and Regina Frey. "I Have Seen the Light!" Vision and Light-Induced Molecular Changes." *Significant Figures and Units*, Washington University, Nov. 2000, www.chemistry.wustl.edu/~edudev/LabTutorials/Vision/Vision.html.

Fitzakerley, Janet. 2015 Vision. University of Minnesota Medical School, 12 Feb. 2015, www.d.umn.edu/~jfitzake/Lectures/DMED/Vision/Retina/VisualCycle.html.

"Light and Dark Adaptation." *Rhodopsin and the Eye*, University of Bristol, www.chm.bris.ac.uk/webprojects2003/white/light_and_dark_adaptation.htm.

Miesfeld, Roger L., and Megan M. McEvoy. *Biochemistry*. W.W. Norton & Company, 2017. pages 384-386.

Sinauer Associates. "Neuroscience: Phototransduction." *YouTube*, YouTube, 9 May 2018, www.youtube.com/watch?v=8Oclbrd06c8.

Questions?