Regulation of Metabolism

Chapter 15 from Nelson and Cox’s Lehninger’s Biochemistry
Rates of a biochemical reactions depend on many factors

- Concentration of reactants
- **Activity of the catalyst**
 - Concentration of the enzyme
 - Intrinsic activity of the enzyme
- **Concentrations of effectors**
 - Allosteric regulators
 - Competing substrates
 - pH, ionic environment
- Temperature
Table 15–3
Equilibrium Constants, Mass Action Coefficients, and Free-Energy Changes for Enzymes of Carbohydrate Metabolism

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>K'_{eq}</th>
<th>Mass action ratio, Q</th>
<th>Reaction near equilibrium in vivo*</th>
<th>$\Delta G'^\circ$ (kJ/mol)</th>
<th>$\Delta G'$ (kJ/mol) in heart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexokinase</td>
<td>1×10^3</td>
<td>2×10^{-2}</td>
<td>8×10^{-2}</td>
<td>No</td>
<td>-17</td>
</tr>
<tr>
<td>PFK-1</td>
<td>1.0×10^3</td>
<td>9×10^{-2}</td>
<td>3×10^{-2}</td>
<td>No</td>
<td>-14</td>
</tr>
<tr>
<td>Aldolase</td>
<td>1.0×10^{-4}</td>
<td>1.2×10^{-6}</td>
<td>9×10^{-6}</td>
<td>Yes</td>
<td>$+24$</td>
</tr>
<tr>
<td>Tissue phosphate isomerase</td>
<td>4×10^{-2}</td>
<td>—</td>
<td>2.4×10^{-1}</td>
<td>Yes</td>
<td>$+7.5$</td>
</tr>
<tr>
<td>Glyceraldehyde 3-phosphate dehydrogenase + phosphoglycerate kinase</td>
<td>2×10^3</td>
<td>6×10^2</td>
<td>9.0</td>
<td>Yes</td>
<td>-13</td>
</tr>
<tr>
<td>Phosphoglycerate mutase</td>
<td>1×10^{-1}</td>
<td>1×10^{-1}</td>
<td>1.2×10^{-1}</td>
<td>Yes</td>
<td>$+4.4$</td>
</tr>
<tr>
<td>Enolase</td>
<td>3</td>
<td>2.9</td>
<td>1.4</td>
<td>Yes</td>
<td>-3.2</td>
</tr>
<tr>
<td>Pyruvate kinase</td>
<td>2×10^4</td>
<td>7×10^{-1}</td>
<td>40</td>
<td>No</td>
<td>-31</td>
</tr>
<tr>
<td>Phosphoglucose isomerase</td>
<td>4×10^{-1}</td>
<td>3.1×10^{-1}</td>
<td>2.4×10^{-1}</td>
<td>Yes</td>
<td>$+2.2$</td>
</tr>
<tr>
<td>Pyruvate carboxylase + PEP carboxykinase</td>
<td>7</td>
<td>1×10^{-3}</td>
<td>—</td>
<td>No</td>
<td>-5.0</td>
</tr>
<tr>
<td>Glucose 6-phosphatase</td>
<td>8.5×10^2</td>
<td>1.2×10^2</td>
<td>—</td>
<td>Yes</td>
<td>-17</td>
</tr>
</tbody>
</table>

*Source: K'_{eq} and Q from Newsholme, E.A. & Start, C. (1973) Regulation in Metabolism, Wiley Press, New York, pp. 97, 263. $\Delta G'$ and $\Delta G'^\circ$ were calculated from these data.

*For simplicity, any reaction for which the absolute value of the calculated $\Delta G'$ is less than 6 is considered near equilibrium.
Active Protein Molecules have a Finite Lifespan

• Different proteins in the same tissue have very different half-lives
 – less than an hour to about a week for liver enzymes
 – The stability correlates with the sequence at N-terminus
• Some proteins are as old as you are
 – Crystallins in the eye lens
<table>
<thead>
<tr>
<th>Tissue</th>
<th>Half-life (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>0.9</td>
</tr>
<tr>
<td>Kidney</td>
<td>1.7</td>
</tr>
<tr>
<td>Heart</td>
<td>4.1</td>
</tr>
<tr>
<td>Brain</td>
<td>4.6</td>
</tr>
<tr>
<td>Muscle</td>
<td>10.7</td>
</tr>
</tbody>
</table>

Table 15-1
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company
Phosphorylation of Enzymes Affects their Activity

- Protein phosphorylation is catalyzed by protein kinases
- Dephosphorylation is spontaneous, or catalyzed by protein phosphatases
- Typically, hydroxyl groups of Ser, Thr, or Tyr are phosphorylated
Control of Glycogen Synthesis

• **Insulin** signaling pathway
 – increases glucose import into muscle
 – **stimulates** the activity of muscle **hexokinase**
 – activates glycogen synthase

• Increased hexokinase activity enables activation of glucose

• Glycogen synthase makes glycogen for energy storage
Figure 15-10
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company
Figure 15-13
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company
Rate of Reaction Depends on the Concentration of Substrates

- The rate is more sensitive to concentration at low concentrations
 - Frequency of substrate meeting the enzyme matters

- The rate becomes insensitive at high substrate concentrations
 - The enzyme is nearly saturated with substrate
Figure 15-5
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company
Figure 15-12
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company
Figure 15-11
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company
Regulation of Phosphofructokinase-1

- The conversion of fructose-6-phosphate to fructose 1,6-bisphosphate is the commitment step in glycolysis
- ATP is a negative effector
 - Do not spend glucose in glycolysis if there is plenty of ATP
Regulation of Phosphofructokinase 1 and Fructose 1,6-Bisphosphatase

- Go glycolysis if AMP is high and ATP is low
- Go gluconeogenesis if AMP is low
Regulation by Fructose 2,6-Bisphosphate

• F26BP activates phosphofructokinase (glycolytic enzyme)
• F26BP inhibits fructose 1,6-bisphosphatase (gluconeogenetic enzyme)
Fructose 2,6-bisphosphate
Figure 15-16a
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company
Figure 15-16b
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company
Regulation by Fructose 2,6-Bisphosphate

• Go glycolysis if F26BP is high
• Go gluconeogenesis if F26BP is low
Gluconeogenesis

ATP

Fructose 6-phosphate

PFK-1

ADP

Fructose 1,6-bisphosphate

F26BP

Fructose 1,6-bisphosphatase-1

P_i

H_2O

Glycolysis
Stimulates glycolysis, inhibits gluconeogenesis

Insulin

\[P_i \]

\[H_2O \]

phosphoprotein phosphatase

PKF-2 (active)

FBPase-2 (inactive)

OH

cAMP-dependent protein kinase

ATP

ADP

glucagon (↑ [cAMP])

PKF-2 (inactive)

FBPase-2 (active)

↓[F26BP]

Inhibits glycolysis, stimulates gluconeogenesis

↑[F26BP]

Figure 15-17b
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company
Regulation of Pyruvate Kinase

• Signs of **abundant energy** supply allosterically **inhibit** all **pyruvate kinase** isoforms

• Signs of **glucose depletion** (glucagon) **inactivate liver pyruvate kinase** via phosphorylation
 – Glucose from liver is exported to brain and other vital organs
Two Alternative Fates for Pyruvate

• Pyruvate can be a source of new glucose
 – Store energy as glycogen
 – Generate NADPH via pentose phosphate pathway
• Pyruvate can be a source of acetyl-CoA
 – Store energy as body fat
 – Make ATP via citric acid cycle
• Acetyl-CoA stimulates glucose synthesis by activating pyruvate carboxylase
Figure 15-25
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company
Dealing with Branch Points in Glycogen

- **Glycogen phosphorylase** works on non-reducing ends until it reaches four residues from an \((\alpha 1\rightarrow 6)\) branch point
- **Debrancing enzyme** transfers a block of three residues to the non-reducing end of the chain
- **Debrancing enzyme** cleaves the single remaining \((\alpha 1\rightarrow 6)\) –linked glucose
Figure 15-35
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company