Chapter 16
Fatty Acid Oxidation and Ketogenesis
Fatty Acid Oxidation

• Responsible for providing energy to most cells while resting. Exceptions: brain and kidney use glucose.

• Excess acetyl-CoA is converted into fatty acids that can be stored or exported from the liver as triacylglycerols.
Why do fats have the most energy content per gram?

- Fats: 9 kcal/gram
- Sugars: 4 kcal/gram
- Amino acids: 4 kcal/gram
- Ethanol: 6 kcal/gram (for fun, calculate the calories in a rum and coke made with 30 mL of \text{rum}, 50 proof, and 210 mL of diet coke.)
Fat vs Sugar vs Amino acid

9 Cal/gram 4 Cal/gram 4 Cal/gram 6 Cal/gram

Copyright © 2017 W. W. Norton & Company
Metabolism is a combustion reaction

- Fuel is oxidized
- Oxygen is reduced
- Fuel that has more H has more e- to lose
- Which fuel has more H per C?

A. Fat
B. Sugar
C. Proteins
D. Ethanol
E. They are all the same
Key Enzymes Involved in Fatty Acid Metabolism

- Fatty acyl-CoA synthetase
 - Catalyzes priming reaction in fatty acid metabolism
 - Converts free fatty acids in the cytosol into fatty acyl-CoA
- Carnitine acyltransferase I
 - Catalyzes the rate-limiting step in fatty acid oxidation
- Acetyl-CoA carboxylase
 - Catalyzes the rate-limiting step in fatty acid synthesis
- Fatty acid synthase
 - Catalyzes a series of reactions that add C2 units to a growing fatty acid chain
Formation of Fatty Acyl-CoA

• Energetically favorable
• Fatty acyl-CoA synthetases differ in specificity by the size of the fatty acids.
• Two step reaction:
 – Fatty acid adenylation occurs (ATP coupled).
 – CoA-SH attacks adenylate intermediate and releases AMP.
Formation of Fatty Acyl-CoA

\[
\text{Adenosine} \quad \text{ATP} \quad \text{Fatty acid} \\
\text{Fatty acyl-CoA synthetase} \quad \text{Pyrophosphate} \\
\Delta G'' = -19 \text{kJ/mol} \\
\text{Pyrophosphatase} \\
\text{AMP} + \text{ATP} \rightleftharpoons \text{ADP} + \text{ADP} \\
\text{Adenylate kinase} \\
\text{ADP} + \text{ATP} \rightleftharpoons \text{ATP} + \text{ADP} \\
\text{Nucleoside diphosphate kinase} \\
\text{AMP} + 2 \text{ATP} \rightleftharpoons \text{ATP} + 2 \text{ADP} \\
\text{Net reaction} \\
\Delta G'' = -15 \text{kJ/mol} \\
\text{Fatty acyl-adenylate (enzyme-bound intermediate)} \\
\text{Fatty acyl-CoA synthetase} \\
\text{Fatty acyl-CoA}
\]
What makes the formation of fatty acyl-CoA energetically favorable?

I. Two molecule of ATP are become 2 ADP
II. The reaction of CoASH with acetyl-AMP is exergonic
III. The hydrolysis of pyrophosphate, catalyzed by pyrophosphatase is exergonic
IV. One molecule of ATP is hydrolyzed.

A. I and III B. II and IV C. I, II and III D. IV only E. none of these
What Happens to Fatty Acyl-CoA?

• If energy cell charge is low:
 – Fatty acyl-CoA is imported into the mitochondrial matrix by the carnitine transport cycle.
 – Degrades fatty acids to:
 • Acetyl-CoA
 • FADH$_2$
 • NADH

• If energy cell charge is high:
 – Fatty acid synthesis is favored.
 – Mitochondrial import of fatty acyl-CoA is inhibited by malonyl-CoA.
Carnitine Transport Cycle

• Regulates cellular metabolism by:
 – Controlling the flux of fatty acids to either degrade them (mitochondrial matrix) or synthesize them and membrane lipids (cytosol)
 – Maintains a separate pool of coenzyme A

• Controlled by malonyl-CoA
 – Inhibits carnitine acyltransferase I
 – Prevents import of fatty acyl-CoA into the mitochondria
Carnitine Transport Cycle

Figure 16.3
Biochemistry, First Edition. Copyright © 2017 W. W. Norton & Company
Fatty Acid Degradation (beta-Oxidation Reactions)

View the Fatty Acid Degradation (beta-Oxidation Reactions) animation
Fatty Acid β-oxidation Pathway

• Occurs in the mitochondria
• Degrades fatty acids C$_2$ units at a time via thiolysis
• Generates FADH$_2$, NADH, and acetyl-CoA
• Consists of four repeatable reactions
Fatty Acid β-oxidation Pathway

• Four steps:
 – Acyl-CoA dehydrogenase (oxidation)
 • Forms FADH$_2$ and a trans C─C bond
 • Isoform dependent on number of carbons in fatty acid chain
 – Enoyl-CoA hydratase (hydration)
 • Adds H$_2$O across the C═C bond
 • Stereospecific
 – 3-hydroxyacyl-CoA dehydrogenase (oxidation)
 • Forms NADH
 – B-ketoacyl-CoA thiolase (thiolysis)
 • Forms acetyl-CoA
 • Removes C$_2$ unit from the fatty acid
Fatty Acid β-oxidation Pathway

Figure 16.4

Fatty Acid β-oxidation Products and ATP Yield

Table 16.1 ATP YIELD FROM THE COMPLETE OXIDATION OF PALMITOYL-COA

<table>
<thead>
<tr>
<th>β oxidation of palmitoyl-CoA</th>
<th>Citrate cycle</th>
<th>ATP generated by oxidative phosphorylation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 NADH →</td>
<td></td>
<td>17.5 ATP</td>
</tr>
<tr>
<td>7 FADH₂ →</td>
<td></td>
<td>10.5 ATP</td>
</tr>
<tr>
<td>8 Acetyl-CoA →</td>
<td>24 NADH →</td>
<td>60 ATP</td>
</tr>
<tr>
<td></td>
<td>8 FADH₂ →</td>
<td>12 ATP</td>
</tr>
<tr>
<td></td>
<td>8 GTP →</td>
<td>8 ATP</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>108 ATP per palmitoyl-CoA</td>
</tr>
</tbody>
</table>

Note: Values for the ATP currency exchange ratio are 2.5 ATP per NADH and 1.5 ATP per FADH₂.
Electron Transfer and β-oxidation

Figure 16.6
Unsaturated fats use different enzymes

What step is skipped in B Oxidation?
What is not made?
A. NADPH
B. FADH$_2$
C. ATP
D. NADH
E. None of these

Metabolism of Polyunsaturated fats:
A. Uses ATP
B. Requires an NADPH
C. Eliminates an FADH$_2$
D. Both B and C
E. None of these
Propionoyl-CoA Forms Acetyl-CoA
Ketogenesis

• Process in which excess acetyl-CoA is converted to ketone bodies (acetoacetate and D-β-hydroxybutyrate)
• Occurs during starvation while carbohydrate sources are limited
• Ketone bodies are exported from liver into muscle tissues.
Ketogenesis

Figure 16.14

Copyright © 2017 W. W. Norton & Company
Formation of Ketone Bodies

\[
\text{Acetyl-CoA} + \text{Acetyl-CoA} \xrightarrow{\beta\text{-Ketoacyl-CoA thiolase}} \text{Acetoacetyl-CoA} \xrightarrow{\text{HMG-CoA synthase}} \text{3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA)} \xrightarrow{\text{HMG-CoA lyase}} 2 \text{Acetyl-CoA}
\]
Figure 16.15

3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) is converted to Acetyl-CoA by HMG-CoA lyase. Acetyl-CoA is then converted to Acetoacetate by Acetoacetate decarboxylase, which releases CO₂. Acetoacetate is then converted to Acetone by the action of d-β-Hydroxybutyrate dehydrogenase. The d-β-Hydroxybutyrate is exported to the blood.

In the tissues (but not the liver), ketone bodies are converted to acetyl CoA.
16.2 Synthesis of Fatty Acids and Triacylglycerols

• Carbon substrates are primarily derived from dietary carbohydrates (i.e., glucose).
Carbohydrate and Fatty Acid Metabolism

View the Carbohydrate and Fatty Acid Metabolism animation
Differences Between Fatty Acid Degradation and Synthesis

Mitochondrial matrix

Fatty acid degradation

1. Oxidation
2. Hydration
3. Oxidation
4. Cleavage

Acetyl-CoA

- CoA dependent
- FAD/NAD⁺ dependent
- Multiple enzymes
- Carnitine transport is rate limiting

Cytosol

Fatty acid synthesis

4. Reduction
3. Dehydration
2. Reduction
1. Condensation

Malonyl-CoA

Acetyl-CoA + CO₂

- ACP dependent
- NADPH dependent
- Two enzymes
- Malonyl-CoA synthesis is rate limiting

Figure 16.18
Fatty Acid Synthesis – Part 1

• Multifunctional enzyme
 – Uses acyl carrier protein as a hydrocarbon anchor
 – Rate-limiting step is the generation of malonyl CoA by acetyl-CoA carboxylase.

• Four step reaction
 – β-ketoacyl-ACP synthase (condensation)
 – β-ketoacyl-ACP reductase (reduction)
 – β-ketoacyl-ACP dehydratase (dehydration)
 – Enoyl-ACP reductase (reduction)
Fatty Acid Synthesis – Part 2

2. Reduction of \(\beta\)-Ketoacyl-ACP to \(\beta\)-Hydroxybutyryl-ACP by \(\beta\)-Ketoacyl-ACP reductase (KR) using NADPH.

3. Dehydration of \(\beta\)-Hydroxybutyryl-ACP to Butenoyl-ACP by \(\beta\)-Hydroxyacyl-ACP dehydratase (DH).

4. Reduction of Butenoyl-ACP to Butyryl-ACP by Enoyl-ACP reductase (ER) using NADPH.

Figure 16.21
Acetyl-CoA Carboxylase

Figure 16.19
Acyl Carrier Protein Structure

Phosphopantetheine group

Hexanoyl-ACP

Acetyl-CoA

Figure 16.22a
Fatty Acid Synthesis (Fatty Acid Synthase Reactions)

View the Fatty Acid Synthesis (Fatty Acid Synthase Reactions) animation
Fatty Acid Synthesis of Palmitate

- $8 \text{ Acetyl-CoA} + 7 \text{ ATP} + 14 \text{ NADPH} + 14 \text{ H}^+ \rightarrow$
- Palmitate + $8 \text{ CoA} + 7 \text{ ADP} + 7 \text{ Pi} + 14 \text{ NADP}^+ + 6 \text{ H}_2\text{O}$
Elongation Enzymes

- Used to increase carbon chain in palmitate to make longer fatty acids
Desaturating Enzymes

- Membrane-bound ER proteins that use O_2 as an oxidant
- Produces unsaturated fatty acids
Triacylglycerol Synthesis

- Formed from phosphatidic acid
- Dephosphorylation occurs
- Addition of fatty acids through esterification
Formation of Phospholipids

Figure 16.29
Formation of Sphingolipids – Part 1

Figure 16.30

Copyright © 2017 W. W. Norton & Company
Formation of Sphingolipids – Part 2

Figure 16.31

Copyright © 2017 W. W. Norton & Company
Regulation of Fatty Acid Synthesis – Part 1

• Modulation of acetyl-CoA carboxylase activity is controlled by:
 – Allosteric mechanisms
 – Citrate and palmitoyl-CoA
 – Covalent modification
 • AMP-activated protein kinase (AMPK)
Regulation of Fatty Acid Synthesis – Part 2

Figure 16.33

AMPK Mechanism

AMP-activated protein kinase

Inactive AMPK

Partialy active AMPK

AMP kinase (LKB1)

Active acetyl-CoA carboxylase polymer

Inactive acetyl-CoA carboxylase monomer

Fully active AMPK

High levels of malonyl-CoA and increased flux through the fatty acid synthesis pathway

Low levels of malonyl-CoA and decreased flux through the fatty acid synthesis pathway

AMP

ATP

ADP

PPi

H2O

Insulin

Protein phosphatase 2C

Copyright © 2017 W. W. Norton & Company
Flux Through Fatty Synthesis and Degradation

Figure 16.35
Biochemistry, First Edition, Copyright © 2017 W. W. Norton & Company
16.3 Cholesterol Synthesis and Metabolism

• Cholesterol synthesis occurs in all cells but primarily occurs in the liver.

• Consists of 4 distinct stages:
 – Formation of mevalonate from acetyl-CoA
 – Formation of isopentenyl diphosphate
 – Formation of squalene
 – Cyclization of squalene
Cholesterol

- Plays a critical role in cell membrane function and production of cell signaling molecules
Cholesterol Synthesis Overview

Figure 16.36
Cholesterol Synthesis – Stage 1

- 2 molecules of acetyl-CoA are condensed.
- HMG-CoA reductase is the rate limiting step of the entire pathway.
- Mevalonate is produced.
Cholesterol Synthesis – Stage 2

- ATP donates 2 phosphoryl groups.
- Isoprene units are involved.
- Dimethylallyl diphosphate is produced.

![Diagram of cholesterol biosynthesis stage 2]
Cholesterol Synthesis – Stage 3 – Part 1

- Isoprene (C$_5$) units are attached to form a geranyl diphosphate (C$_{10}$) compound.
- Farnesyl diphosphate (C$_{15}$) is made.
- Formation of squalene
Cholesterol Synthesis – Stage 3 – Part 2

Figure 16.39
Cholesterol Synthesis – Stage 4

- Squalene (C_{30}) is cyclized.
- Lanosterol is converted into cholesterol in 19 steps.
Fates of Cholesterol from the Liver – Part 1

• Three major functions:
 1. Stored in intracellular lipid droplets
 2. Packaged into lipoproteins and exported into circulatory system
 3. Secreted into small intestines through the bile duct
Fates of Cholesterol from the Liver – Part 2

Figure 16.41
Cholesterol Metabolism and Cardiovascular Disease

• Statin drugs can be used to decrease the risk of cardiovascular disease.
Lipoproteins

• Apolipoproteins – membrane-bound vesicles contain a hydrophobic core and one or more proteins on the surface
• Consist of a phospholipid monolayer containing cholesterol and one or more apolipoproteins
• Serve as signaling molecules
• Differ depending on protein:triglyceride ratio and densities
Lipoprotein Classes

Table 16.2 MAJOR CLASSES OF LIPOPROTEINS IN HUMAN SERUM

<table>
<thead>
<tr>
<th>Feature</th>
<th>Chylomicron</th>
<th>Very-low-density lipoprotein</th>
<th>Intermediate-density lipoprotein</th>
<th>Low-density lipoprotein</th>
<th>High-density lipoprotein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter (nm)</td>
<td>100–1,000</td>
<td>30–80</td>
<td>25–35</td>
<td>18–25</td>
<td>5–12</td>
</tr>
<tr>
<td>Density (g/cm3)</td>
<td><0.95</td>
<td><1.006</td>
<td><1.006–1.019</td>
<td><1.019–1.063</td>
<td><1.063–1.210</td>
</tr>
<tr>
<td>Percent protein (%)</td>
<td>2</td>
<td>10</td>
<td>20</td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td>Percent triacylglycerol (%)</td>
<td>85</td>
<td>60</td>
<td>22</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Percent cholesterol ester (%)</td>
<td>5</td>
<td>15</td>
<td>30</td>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>Major apolipoproteins</td>
<td>apoC-II, apoC-III, apoB-48, apoE</td>
<td>apoC-II, apoC-III, apoB-100, apoE</td>
<td>apoC-II, apoC-III, apoB-100, apoE</td>
<td>apoB-100</td>
<td>apoC-II, apoC-III, apoA-I, apoA-II, apoD</td>
</tr>
</tbody>
</table>

Note: apo = apolipoprotein.

Lipoprotein Structures

- Multiple classes including:
 - Chylomicrons
 - VLDL
 - IDL
 - Chylomicron remnants
 - LDLs
HDL Particles Reverse Cholesterol Transport

- HDL particles remove cholesterol from peripheral tissues through apoA-I.
- Cholesterol from peripheral tissue is taken back into the liver.
Cholesterol Homeostasis

Figure 16.50

Cholesterol-Lowering Drugs

Simvastatin (Zocor)

Lovastatin (Mevacor)

HMG-CoA

Rosuvastatin (Crestor)

Atorvastatin (Lipitor)

Figure 16.51

SREBP

• Large proteins embedded in the ER membrane
• Low levels of intracellular cholesterol stimulate binding of SREBPs to SRE sequences located in the transcriptional control region of specific genes
• Control mechanism for cholesterol biosynthesis
• SREs have a high affinity binding site for SREBP.
SREBP Binding

Figure 16.57

Copyright © 2017 W. W. Norton & Company
Clicker Question 1

• Myristic acid (C\textsubscript{14}) is completely metabolized via β-oxidation. Which products are formed?

 – 6 NADH, 6 FADH\textsubscript{2}, 6 acetyl-CoA
 – 6 NADH, 6 FADH\textsubscript{2}, 7 acetyl-CoA
 – 7 NADH, 7 FADH\textsubscript{2}, 6 acetyl-CoA
 – 7 NADH, 7 FADH\textsubscript{2}, 7 acetyl-CoA
Clicker Question 1 – Answer

• Myristic acid \((C_{14})\) is completely metabolized via \(\beta\)-oxidation. Which products are formed?

b. 6 NADH, 6 FADH\(_2\), 7 acetyl-CoA
Clicker Question 2

• Arachidonic acid (C$_{20}$) is fully metabolized by fatty acid degradation. How many rounds does it take for this to happen?

- 7
- 8
- 9
- 10
Clicker Question 2 – Answer

• Arachidonic acid (C_{20}) is fully metabolized by fatty acid degradation. How many rounds does it take for this to happen?

c.9
Clicker Question 3

• Ketogenesis produces which products?

a. Acetyl-CoA
b. Acetoacetate
c. D-β-hydroxybutyrate
d. A and B
e. B and C
Clicker Question 3 – Answer

• Ketogenesis produces which products?

e. B and C
Clicker Question 4

• When acetyl CoA levels are too high, they are exported through the __________ in the mitochondria.

a. acetyl-CoA transporter
b. β-oxidation pathway
c. citrate shuttle
d. glycolytic pathway
e. malate shuttle
Clicker Question 4 – Answer

• When acetyl CoA levels are too high, they are exported through the _________ in the mitochondria.

c. citrate shuttle
Clicker Question 5

• Statin drugs inhibit which stage of cholesterol biosynthesis?

 a. Stage 1
 b. Stage 2
 c. Stage 3
 d. Stage 4
 e. Stage 5
Clicker Question 5 – Answer

• Statin drugs inhibit which stage of cholesterol biosynthesis?

a. Stage 1
This concludes the Lecture PowerPoint presentation for Chapter 16