How to Determine the pH of Weak Acids and Bases.

- 1. Read the problem.
- 2. Determine if the acid is strong or weak.
- 3. For strong acids, the hydronium ion concentration is the same as the acid concentration, because there is 100% dissociation of the proton from the acid.
- 4. For weak acids, there is an equilibrium between the weak acid and its conjugate base. So the equilibrium expression must be used to determine hydronium ion concentration.
- 5. Use the ICE method to determine the equilibrium concentration of hydronium ions.
- a. Look up the Ka
- b. Write the balanced equation.
- c. FillI in the ICE table
- d. Solve for $[H_3O^+]$
- e. $pH = -log[H_3O^{\dagger}]$
- 1. Sample problem: What is the pH of a 0.02M solution of carbonic acid?
 - 2. Is this a weak acid or a strong acid?
 - **3.** For strong: $pH = -log[H_3O^{\dagger}]$
 - **4.** For weak: $Ka = [\underline{H_3O}^+][\underline{A}^-]$ let $[H_3O^+] = x$, [HA] x also = A- (see balanced equation)
 - **5 a.** Ka for carbonic acid is 1.7 x 10⁻⁴

b. Balanced Eq:	H ₂ CO ₃	çè	HCO ₃ -	H ₃ O ⁺
c. Initial (get from problem)	0.02		0	0
Change (x number of moles of HA lose their protons to become A-)	-x		х	х
Equilibrium (sum of I and C)	0.02-x		x	x

Plug the equilibrium concentrations into the Ka expression and solve for x. Since $x = [H_3O^{\dagger}]$, take the negative log of x to get the pH.

d.
$$1.7 \times 10^{-4} = \frac{x * x}{0.02-x}$$

If x is less than 5% of the concentration of the weak acid, it can be ignored in the denominator, as it is subtracted. A large number minus a very small number is essentially equal to the large number. For example, if you have 100,000 pennies and 4 pennies get lost, you still have about a \$1,000.

Ignor x in the denominator:
$$1.7 \times 10^{-4} = \frac{x \times x}{0.02}$$

$$0.02 * 1.7 \times 10^{-4} = x^2$$

x =squareroot of 3.4 \times 10⁻⁶

$$x = 0.0018$$

e.
$$pH = -log x$$

$$pH = -log .0018$$
 $pH = 2.74$

$$pH = 2.74$$

Now you try it: What is the pH of a 0.05M solution of sodium dihydrogen phosphate? $(Ka = 1.38 \times 10^{-7})$